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Abstract. Monte Carlo calculations are performed on a model that was proposed in OUT previous 
letter to explain a large isotope effect on the transition femperature (Td from a ferroelecuic phase 
to a paraelemic phase in KKzP04 (KDP). On the basis of the distribution of the electric dipole 
moments obtained f” these calculalons, the distribution of the excitation energies for protons 
is calculated; it is found that lheir features in agreement with the excitation spenra in KDP. 
observed by inelastic neutron.scattering experiments. 

1. Introduction 

In the tunnelling model, which had been accepted as the mechanism of the phase transition 
from a ferroelectric phase to a paraelectric phase in KDP and KDzP04 (DKDP), the phase 
transition is of a displacive type with a softening of the optical phonon mode [2]. However, 
recent experiments concerning these materials indicate that the phase transition is of an 
order-disorder type, and that the mode that had been assigned to the soft mode comprises 
two components: a polarization-fluctuation mode and a libration mode of PO4 tetrahedra 
[3-5]. Therefore, the mechanism of the phase transition in these materials has not yet been 
clarified, including the physical origin of a large isotope effect on the transition temperature 
Vd. 

Recently, Kojyo and Onodera [6] proposed a quasi-onedimensional model for CsHzP04 
and CsD2P04, in which a strong coupling between protons (deuterons) and dipole moments 
is assumed; they showed that the properties of the ferroelectric phase transition in these 
materials can be explained by their model. 

In our previous letter [ I ]  (from now on referred to as I) we calculated the energies and 
wave functions of both the ground and excited states for a proton in KDP and a deuteron in 
DKDP by adopting an empirical potential. Based on these quantum-mechanical calculations 
for protons and deuterons, we proposed a new model for the phase transition in these 
materials, under the assumption that strong coupling exists between protons and dipole 
moments, as in the Kojyo-Onodera model. 

In this model, a system comprising N distorted PO4 tetrahedra and 2N protons was 
considered; its energy was written as 
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with 
(2) 2 If2 

The first term in ( I )  is the elastic energy due to a mechanical deformation of the tetrahedra; 
the second term is the interaction energy between dipoles; the last term is the energy of 2N 
protons, where -E: is the ground-state energy of a proton connecting two neighbouring 
tetrahedra (i and j ) .  This expression was derived under the following assumptions: (1) the 
distortion of tetrahedron i is proportional to its electric dipole moment j ~ i ;  (2) all dipole 
moments of the tetrahedra lie along the c axis in a KDP (DKDP) crystal; and (3) the interaction 
between a proton and the dipole moments can be expressed as K(pj + pj)x. where pi and 
pj are the dipole moments of two tetrahedra (i and j )  connected by the proton, x is the 
position of the proton in the direction of the oxygen-hydrogen-oxygen bond (M bond) 
and K is a constant. 

Since -cc < pi < +cc for all i, the average (X) of a physical quantity (X) in thermal 
equilibrium should be calculated using the relation 

(X) = / d m  ...I dwr[X exp(-E ~ , , l k s r ) ] / S d p l . . . S d i ~ r  exp(-EpotlksT) (3) 

if X depends on only the dipole moments {pi]. We assumed here that the classical 
approximation is valid for the motion of the dipoles. Since it is difficult to perform such 
calculations analytically, we adopted in I the assumption of permanent dipoles, that is, 
pi = @&(Si = 1 or - I  for all i), where @$ is a saturated dipole moment. Under this 
assumption, E,,, can be rewritten as an Ising-type expression. Upon applying the mean-field 
approximation to this expression we found that this model gives a consistent account of the 
isotope effect on T,. 

Under the assumption of permanent dipoles, however, it is expected that there are a 
considerable number of states with pi + pj = 0 in a paraelectric phase, since antiparallel 
alignments of neighbouring dipoles occur. As shown in figure 2 in I, the excitation energies 
(AEs, AE, and BE,) at 1pi +pjl = 2p,  are 0.16,0.12 and 0.16 eV, respectively, whereas 
AE, = 0.09, AE, = 0.13 and AEz = 0.17 eV at lpi +pjl = 0. Here, AE, is the excitation 
energy for the motion of a proton in the direction along an 0-0 bond, and A E, and 
A E* are those in the directions perpendicular to the 0-0 bond direction. Therefore, a 
peak corresponding to A Ex at pi + p ,  = 0 is expected to appear in the excitation spectra 
in a paraelectric phase. Nevertheless, no such peak has yet been observed in an inelastic 
neutron-scattering experiment 171. This indicates that more rigorous calculations are required 
to confirm the reliability of our model for KDP. 

In  this paper, the Monte Carlo method is used to calculate thermal average of physical 
quantities in our model using (3). The purpose of this paper is to examine the properties of 
the excitation spectra of protons in our model by using a treatment beyond the assumption 
of permanent dipoles. 

2. The determination of the parameters and the calculation method 

To perform a treatment beyond the assumption of permanent dipoles, we take into account 
only the nearest-neighbour interaction for the direct interaction between dipole moments 
(the second term in (1)). i.e., 

H Sugimata and S Ikeda 

E$ = [hZ + 12KZ(p i  + pj) ] - h.  

.. 
where on the right-hand side denotes the summation over pairs of neighbouring 
tetrahedra. This approximation was adopted in order to simplify the calculations. Note 
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that the number of parameters becomes only five upon adopting this approximation. Three 
of these parameters (h ,  I and K )  were obtained from the quantum-mechanical calculations 
in I: h and I were determined so as to reproduce the K (pi + pj )  dependence of the ground- 
state energy -E;  obtained, whereas, taking account of the observation of the excitation 
energies, K was chosen as 2&Kd = 1.5 eV, where d is the distance of an 0-0 bond. These 
values are as follows: hH = 0.110 eV, hD = 0.058 eV (= 0.S3hH), I = 0.22 A, and I K  = 
0.6hH/pr. Here, hH and h’ are h in KDP and DKDP, respectively, and pr is a saturated 
dipole moment in KDP. In the present calculation, the isotope effect of I is disregarded 
because of its smallness. 

Knowledge concerning the remaining parameters ( A  and E )  is required in order to 
proceed with our calculations. We now examine the behaviour of the system T = 0 K. If 
pi = pLs holds for all tetrahedra, E,,, can be written as 

(5) 2 I / Z  E p o r = N ( ~ ( A + B ) p : - 2 ( [ h 2 + ( 2 Z K p , )  J - h ) } .  
Since @s is determined by the relation aEpOl/apLS = 0, we obtain the following relation 
between the parameters: 

(6)  
On the other hand, if the dipoles of neighbouring tetrahedra align so as to be antiparallel, 
Epor is as follows: 

(7) 
This means that the condition under which a ferroelectric phase becomes stable is A > B.  
In both KDP and DKDP the ferroelectric phase is observed at low temperatures. Accordingly, 
we obtain 

B = 2(21K)* / [h2  + ( 2 1 K p . ) 2 ] 1 / 2  - A .  

Epor = f N ( A  - B ) p s .  2 

A > (2ZK)’ / [h2  + ( 2 1 K p s ) 2 ] 1 / 2 .  (8) 
We thus use A and E ,  which satisfy relations (6) and (8). 

The length d of an 0-0 bond is larger in DKDP than in KDP by about 1%. The modest 
change of d gives an important effect on Tc, as shown in I. This is due to the fact that h 
strongly depends on d since the depth and the form of the potential field acting on a proton 
(a deuteron) is sensitive to d. 

On the other hand, A and B are parameters describing the strength of the mechanical 
deformation energy of the tetrahedra and that of the direct interaction between neighbouring 
dipoles, respectively. Therefore, the changes of d and the mass should have no influence 
on A and E ,  i.e., A and B are expected to be identical in both KDP and DKDP. 

From this we obtain 

( h y  + ( 2 l K p y  = ( 2 / K p 3 Z  (9) 
using (6),  where p,” is ps in DKDP. Substituting the values of hH, hD and I K into (9), we 
obtain p: = 1.2~:. This isotope effect on ps agrees well with the observations [SI. 

Monte Carlo calculations were performed on a KDP lattice with N(= 4000) tevahedra 
imposing a periodic boundary condition, by using the Metropolis important sampling method 
191. In the calculations, pi were chosen at random from values between -6pr and +6pg; 
the average was calculated from data of -1000-2000 Monte Carlo steps obtained after the 
first 1000 Monte Carlo steps. 

3. Results 

We now discuss some of the results of our Monte Carlo calculations. Figure 1 gives the 
temperature dependences of the thermal average of dipoles. From this figure we can see that 
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Feure 2. Temperature dependences of the specific heat - - 
average of dlpole momnu in KDP oblaincd by aruming 
(a) A = 0.96hH,'(fip)2 and (b) A = 1 OhH, (pp?.  

there is a phase transition from a ferroelectric phase to a paraelectric phase; the transition 
temperatures (T,)  are 120 K for A = 0.96hH/(pP)Z and 140 K for A = I.OhH/(pr)' &hen 
h = hH is used. If h = hD(= 0.53hH) is adopted. T, is 310 K for A = 0.96hH/(p:)' and 
360 K for A = I.ObH/(p:)*. Here, hH = 0.1 I eV and fir = 4.8 x IO-'' pC cm. Note that 
the observed values of T, are 122 K in KDP and 230 K in DKDP. 

We also calculated the specific heat ( C V )  h m  E ,  using the relation c , ~  = a E , , / N a T +  
$B. The result is shown in figure 2. It was found from this calculation that (here is a peak 
of CY near to T,, due to an entropy change induced by the phase transition, and that its 
entropy change is about k s  In 2 per hydrogen atom. This means that the phase transition 
in our model is of the order4sorder type. We note here ihat CY at low temperatures is 
k ~ .  This IS due to the fact that the motion of dipoles is restricted to one dimension and the 
classical approximation is adopted for the dipoles. 

due io the motion of dipole momenu u1 W P  o b w e d  
by assuming A = 0 .96hH/ (# r ! * .  

Figure 3. Calculated distributions of the dipole moments: ( U )  f (p1 )  a i  ( I )  T = 60 K and (2) 
T = 190 K ( h )  g [ i h  +@,)I at (1) T = M) K and (2) T = 190 K. h these calculations. A = 
0.96hH/(p:)2 and h = 0.1 1 eV are assumed. 

Figure 3 shows two kinds of distribution of the dipole moments obtained from our Monte 
Carlo calculations using A = 0.96hH/(p:j2 and h = hH(= 0.11 eV): a distribution of p;, 
f(,u;), and a distribution of a sum of two neighbouring dipole moments, g[f(pi + pjj]. 
At T < G, both of the distributions (f and g j  have a peak at p:, due to an ordering 
of the dipoles. We emphasize here that the width of g is of the order of p?, even at T 
= 60 K. At T z Tc, f has a broad peak at pi = 0, whereas g has two broad peaks at 
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about h0.8~:. This remarkable difference between f and g indicates that there is a strong 
correlation between neighbouring dipoles, even in the paraelectric phase. Similar features 
are also found for f and g obtained from calculations using h = hD(= 0.058 eV). 

Since the excitation energies of a proton depend on the sum of two neighbouring 
dipoles in our model, the result of g obtained here is expected to have a serious influence 
on the excitation spectra of protons. By using the present result for g[$(pi  + pj)] and 
the dependence of the excitation energies on pi + pj obtained in our previous letter, we 
calculated the distributions of the excitation energies from the ground state to the excited 
states. The result is shown in figure 4. In the calculations, we assumed that the broadening 
of the energy levels due to other sources, such as lattice vibration, may be expressed by a 
Gaussian distribution with a standad deviation proportional to ksT .  

' 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0 10 0.15 0.20 0.25 0.30 

Excitation energy [eV] Excitation energy lev ]  

Figure 4. Calculated distributions of ihe excitation energies for a pmton at (1) T = 60 K and (2) 
T = 190 K. The distributions for AE,  and for both A E ,  and AEz are denoted by shortdashed 
and long-dashed curves, respectively. The full curve indicales the total disvibution. In these 
calculations, A = 0.96hH/l~r)2  and h = 0.11 eV are assumed. 

One of the striking features of the result is that A E ,  distributes over a wide energy range. 
Although such a broadening of the distribution of AE,  is remarkable in the paraelectric 
phase, it is also considerable at temperatures lower than Tc. Another is that the distributions 
of BE, and AE,  have sharp peaks at 0.12 and 0.16 eV, respectively, in both the paraelectric 
and ferroelectric phases, in contrast with the distribution of AE,. These properties are 
independent of the transition temperature. 

These features are due to the pj + pj dependence of the excitation energies: AE, 
strongly depends on pi + pj, whereas both AE,  and AEz are almost independent of 
pi + pj (see figure 2 in I); therefore, only AE, distributes over a wide energy range, when 
the distribution of pi + pj has a remarkable broadening, as obtained here. 

We emphasize here that the total distribution defined by summing these three 
distributions has only two peaks in both the ferroelectric and paraelectric phases; therefore, 
no peak corresponding to A E, at pi + pj = 0 is observed in the excitation spectra of protons. 
This feature of the total distribution is in good agreement with the excitation spectra in KDP 
crystals observed by inelastic neutron scattering experiments, except for the 0.028 eV peak 
[71. This agreement strongly indicates that the broadening of the distribution of AE,  due 
to the mechanism described here is realized in KDP. 

4. Discussion 

We note here that the broadening of the distribution of A Ex at 60 K is considerable. 
This peak broadening is caused by the fact that thermal fluctuations of pj + pj are 
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large. In a system with such large fluctuations in ordered phases, quantum fluctuations are 
expected to be large in the low-temperature region where quantum effects become dominant. 
Accordingly, distributions of AE, should be broad, even at very low temperatures. This 
indicates that observations of the peak of AE, are difficult under ordinary conditions, even 
if the peak position of AE, does not coincide with that of AE, or AE,. The present result 
that excitation spectra have only two peaks in both the paraelectric and ferroelectric phases, 
therefore, Seems to be a common property in hydrogen-bonded crystals with remarkable 
isotope effects on Tc. In fact. excitation spectra with two large peaks are also observed in 
RbHZP04 (RDP) [lo]. In order to confirm this inference, however, more detailed studies are 
required, including experimental effow. 

Finally, we make the following remarks conceming the validity of the present 
calculation. 

(i) Finite-size effects appear in Monte Carlo calculations [9]. Accordingly, the estimates 
of the transition temperatures should be viewed with care. Errors of the transition 
temperatures, however, have no influence on the present conclusions for the distributions of 
the excitation energies of protons, since the features of the distributions obtained here are 
not dependent on the transition temperature. 

(ii) The long-range part of the direct interaction between the dipole moments was 
disregarded in our calculations for simplicity. A long-range interaction, however, plays some 
role for the behaviour of some physical quantities near to the transition point. Consequently, 
the critical properties obtained here could be described incorrectly. Nevertheless, we believe 
that this approximation is good enough for the present purpose, since the states of a proton 
and the distributions of dipoles are mainly determined by the short-range interactions. 

In summary, Monte Carlo calculations were performed on a model proposed in I to 
explain the ferroelectric phase transition in KDP. It was found that our model gives a 
consistent account of the excitation spectra of the protons in KDP observed by inelastic 
neutron scattering. This result strongly indicates that the model is valid and that treatment 
beyond the assumption of permanent dipoles is essential to understand the properties of 
hydrogen-bonded crystals. 
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